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Abstract—Recently, remote sensing image captioning (RSIC)
has drawn an increasing attention. In this field, the encoder-
decoder based methods have become the mainstream due to
their excellent performance. In encoder-decoder framework, the
convolutional neural network (CNN) is utilized to encode a
remote sensing image into a semantic feature vector, and a
sequence model such as long short-term memory (LSTM) is
subsequently adopted to generate a content-related caption based
on the feature vector. During the traditional training stage,
probability of the target word at each time step is forcibly
optimized to 1 by Cross Entropy (CE) loss. However, because
of the variability and ambiguity of possible image captions, the
target word could be replaced by other words like its synonyms,
and therefore such optimization strategy would result in over-
fitting of the network. In this paper, we explore the over-fitting
phenomenon in RSIC caused by CE loss, and correspondingly
propose a new Truncation Cross Entropy (TCE) loss aiming
to alleviate the over-fitting problem. In order to verify the
effectiveness of the proposed approach, extensive comparison
experiments are performed on three public remote sensing image
captioning datasets, including UCM-captions, Sydney-captions
and RSICD. The state-of-the-art result of Sydney-captions and
RSICD and the competitive results of UCM-captions achieved by
TCE loss demonstrate that the proposed method is beneficial to
RSIC.

Index Terms—remote sensing, image captioning, Truncation
Cross Entropy loss, over-fitting

I. INTRODUCTION

H IGH resolution remote sensing images, which have
a wide range of applications [1]–[7], can be easily

obtained nowadays due to the rapid development of remote
sensing technology. How to efficiently mine the relationship
between the visual features and semantic information hidden in
remote sensing images has been widely concerned. Motivated
by natural image captioning [8]–[14], remote sensing image
captioning (RSIC) [15] has been explored in the past few
years. RSIC, which combines computer vision with natural
language processing [16], aims to let machine automatically
generate human understandably descriptions from the given
remote sensing images.

Benefiting from the technology of deep learning, the meth-
ods based on neural encoder-decoder architecture have grad-
ually become a growing trend in the field of remote sensing
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(a) Many tennis courts arranged neatly with
some plants surrounded.

(b) Many tennis courts arranged neatly with
some trees surrounded.

(c) Many tennis courts arranged neatly with
some plants surrounded.

(d) Some tennis courts arranged neatly with
some plants surrounded.

Fig. 1: The sentences for an image is not unique, and some
words can be replaced by other words like their synonyms.

image captioning. This kind of methods typically contain two
stages: image understanding and caption generation. In image
understanding phase, the convolutional neural network (CNN)
is utilized as a feature extractor to encode the input remote
sensing image into a high-level semantic feature vector of fixed
dimension, which aggregates the visiual features and objects
of the images. Subsequently, in caption generation phase, the
logic and syntax relationship of these visual features and
objects is decoded into a well-formed sentence by a sequence
model, such as long short-term memory (LSTM) [17]. In this
way, a lot of concise and meaningful sentences would be
generated for the input remote sensing images, which is in line
with the logic of human language and is helpful for human
cognitive understanding.

Commonly, during the training stage, the encoder-decoder
models are optimized by Cross Entropy (CE) loss [18], which
regards the word prediction as a classification task [19]. At
each time step, a word is predicted by the decoder network
according to the following three components: the feature vec-
tor, the previous word and the generated sentence. It is worth
mentioning that the probability of the target word at each time
step is forcibly optimized to 1 by CE loss. Nevertheless, due to
the variability and ambiguity of possible image captions, the
target word may be strongly related to other non-target words
like its synonyms. For example, as shown in Fig. 1, the given
remote sensing image can be described by several sentences
of (a)-(d). For (a) and (b), the object words of “plants” and
“trees” could be replaced by each other. Similarly, for (c)
and (d), “Many” and “Some” are alternative. To improve the
output probability of target word, the unreasonable noise in the
image would be learned. Thus, such 1-Probability optimization
strategy would lead to the over-fitting of the network when the
noise is learned.

In order to quantitatively explore the over-fitting caused by
CE loss, in this paper, three different forms of CE loss are
defined firstly according to the optimized objects, which are
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Positive Cross Entropy (PCE) loss, Negative Cross Entropy
(NCE) loss, and Positive-Negative Cross Entropy (PNCE) loss.
In PCE loss, only the target word regarded as positive sample
is adopted to optimize the model, and it is intrinsically equal
to the normal CE loss used in RSIC. In contrast, when using
NCE loss, only the non-target words treat as negative samples
are employed for optimization of the model. In terms of PNCE
loss, both the positive and negative samples (i. e., all the words
in the vocabulary) would be adopted to optimize the whole
model.

Besides, to alleviate the over-fitting problem, a novel Trun-
cation Cross Entropy (TCE) loss for remote sensing image
caption generation is first presented in this paper. Different
from the conventional CE loss, the proposed TCE loss is
a piecewise loss which consists of two parts: a traditional
CE loss and a truncation loss. More specifically, during the
training stage, an upper limit would be set to 1− γ to decide
which loss would be selected. When the output probability of
the current word is lower than 1 − γ, the traditional CE loss
would be employed to optimize the whole model. And when
the output probability of the word exceeds the upper limit
of 1 − γ, the truncation loss mechanism would be activated
immediately, which means the target probability of this word
will not be optimized higher than 1−γ. In this way, a margin
of γ, which is also quite valuable for the sentence, can be
reserved for the non-target words in the vocabulary. Such
a fuzzy mechanism can effectively alleviate the over-fitting
phenomenon caused by CE loss and enhence the performance
of the base model.

Overall, the main contributions of this paper can be sum-
marized as follows:

1) To explore the over-fitting caused by Cross Entropy loss
in RSIC, we present three types of loss, including PCE
loss, NCE loss and PNCE loss according to the optimized
words. And the corresponding comparison experiments
are conducted with quantitative analysis.

2) A novel Truncation Cross Entropy (TCE) loss, which
aims to alleviate the over-fitting problem caused by CE
loss, is first proposed for caption generation of remote
sensing images. By researving a probability margin for
non-target words, the proposed TCE loss is helpful to
generate more flexible and concise descriptions for re-
mote sensing images and further enhence the generaliza-
tion performance of the whole model.

3) Different CNNs combined with LSTM are applied on
three public datasets to verify the effectiveness of the
proposed TCE loss. The state-of-the-art result of Sydney-
captions and RSICD and the competitive results of UCM-
captions, which are achieved by TCE loss, demonstrate
that the proposed approach is beneficial for RSIC.

The remainder of this article is organized as follows: Section
II introduces the related works of remote sensing image
captioning and Cross Entropy loss. In Section III, we describe
the proposed Truncation Cross Entropy loss based method in
detail. The experimental results and analysis on three datasets
are introuced in Section IV. Finally, conclusions are provided
in Section V.

II. RELATED WORK

In this section, the relevant work of remote sensing image
captioning and Cross Entropy loss will be briefly introduced.

A. Remote Sensing Image Captioning

Generally, the methods of RSIC can be roughly divided
into three categories: retrival based methods, template based
methods and encoder-decoder model based methods.

Retrival based methods depend on the retrival results and
the matching degree. For example, Wang et al. [20] presented
a collective semantic metric learning architecture to describe
the image content more diversely. Based on the techonolegy
of metric learning, this model maps the dimensions of input
images representation and their corresponding captions rep-
resentation to the same space. By computing the distances
between the test image and all collective captions, the caption
with the smallest distance would be picked up as the final
descriptive sentence. However, since the generated captions
are sereached from the existing database, the methods based
on retrival are difficult to perform well when facing an input
image which has low similarity with all the images in database.

Template based methods aim to define a fixed sentence tem-
plate with several blanks reserved. Then after extracting fea-
tures from input images, the detected objects, their attributes
and the relationship among them would be correspondingly
filled in the reserved blanks. For instance, a Fully Convolu-
tional Networks (FCN) based method was proposed by Shi
et al. [21] for better describing the remote sensing images in
human languge, where fully convolutional networks [22] are
employed to capture the elements with three different levels
in a remote sensing image. In addition, a collective of triplets
are used to guide the generation of the captions. Nevertheless,
for templated based methods, one problem researchers have to
consider is that the predefined template has greatly limited the
flexibility of the generated captions, thus making the forms of
the generated sentences quite rigid.

The encoder-decoder model based methods [23] are end-
to-end which mainly contains two stages of encoding and
decoding. The purpose of encoding is to represent the input
image as a feature vector of fixed dimension, where different
kinds of feature extractors, especially CNN, can be employed.
For decoding, a sequence model such as RNN [24] or LSTM
[17] can be utilized to generate the corresponding caption
word by word with the guidance of the feature vector. The
methods of this type for RSIC were first proposed in [25]
by Qu et al., where a multimodal nueral network model is
specially designed to understand the remote sensing images in
semantic level. Besides, different CNNs combined with RNN
or LSTM are explored to find the best combination for RSIC
in this paper with two public datasets released. After that, Lu
et al. [26] presented a new public dataset for RSIC, and both
the “soft” and “hard” attention are introduced in this paper.
After that, attention mechanism is widely used in the field of
RSIC. For example, Yuan et al. [27] presented a multi-level
attention module concentrating on different spatial positions
and different scales. In general, methods based on encoder-
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Fig. 2: The framework of the proposed TCE loss based method.

decoder model have become more and more popular because
of their excellent performace.

B. Cross Entropy Loss for RSIC

Cross Entropy (CE) is mainly used to indicate the difference
information between two probability distributions. Generally,
for encoder-decoder based model of RSIC, the procedure of
word prediction can be viewed as a classification task, where
CE loss is employed for optimization. For decoding part, all
words in candidate vocabulary would be assigned a probability
after going through a softmax layer. The goal of CE loss is
to optimize the probability of the target word to 1 while non-
target words to 0, and only one word would be generated at
each time step. CE loss used in RSIC can be formulated as:

LCE = −
N∑
i=1

y(i) ∗ log ŷ(i) (1)

where LCE denotes the Cross Entropy loss, y(i) and ŷ(i) refer
to the ground truth label and its factual output probability,
respectively. N represents the total number of classes.

III. METHODOLOGY

In this section, the proposed Truncation Cross Entropy
(TCE) loss is introduced in detail and used to optimize
the captioning models obeying the classical encoder-decoder
framework for RSIC. As shown in Fig. 2, the workflow of TCE
loss based encoder-decoder model mainly consists of three
components: (1) Feature Extractor. (2) Caption Generator. (3)
Truncation Cross Entropy Loss.

A. Feature Extractor

For an encoder-decoder based method, the goal of image
representation is to encode the input images into high-level
semantic features, which is a vital part for RSIC. Traditionally,
the methods of feature extraction can be generally divided
into two categories: handcrafted features and deep learning
features. Nowadays, a large number of deep learning models,
especially Convolutional Neural Network (CNN) [28]–[31],
have shown surprising feature representation in a wide range of
image fields, and they also work well in remote sensing image
captioning. Different from the methods based on handcrafted
features, which require considerable engineering skills and
domain knowledge, CNN can automatically learn features
from data through a deep-structured neural network. Besides,
since many processing layers are generally contained, CNN
can learn and obtain more powerful feature representations
with multiple levels of abstraction.

Since CNN has achieved excellent visual image representa-
tion, it is utilized to extract the features of remote sensing
images. For a CNN model, it is usually composed of the
stacked convolutional blocks (backbone) and fully-connected
layer (classifier). However, the classifier is redundant for
RSIC. Therefore, the last fully-connected layer is removed
from CNN and the rest CNN backbone is used as feature
extractor. To verify that the proposed TCE loss is not limited
by CNN models, in this paper, several different kinds of CNN
models are used for feature extraction.

Given an RGB remote sensing image of I , the multi-channel
semantic feature map with the spatial size of H ×W , which
is denoted as F ∈ RC×H×W , is extracted from the image by
CNN backbone. Here C is the number of feature channels. It
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is formulated as:

F = CNNconv(I), (2)

where CNNconv represents the CNN backbone.
To reduce the model parameters, F is converted into the

corresponding feature vector of v ∈ RC by a Global Average
Pooling (GAP) layer [32], which is formulated as:

v = GAP (F ), (3)

B. Caption Generator

Generally, the goal of caption generation is to decode the
feature vector extracted by CNN into a sequence of words.
Here, Long-Short Term Memory (LSTM) [17], which is a
widely used sequence generation model, is utilized as a caption
generator in our model. Different from the traditional sequence
models, since LSTM is able to store long-term memory
information, it has a good ability to solve the problem of
gradient vanishing.

The structure of LSTM used in this paper is shown in Fig. 3,
and it is constructed by several basic blocks stacked together.
It is worth noting that the core of LSTM is the cell state,
where the transfer process of information from the last cell
state ct−1 to the current cell state ct is specially controlled
by three gates, i.e., input gate it, forget gate ft, and output
gate ot. At time step t, the update procedure of LSTM can be
represented as follows:

it = σ(Wxixt +Whiht−1 + bi), (4)

ft = σ(Wxfxt +Whfht−1 + bf ), (5)

c̃t = tanh(Wxcxt +Whcht−1 + bi), (6)

ct = ft ∗ ct−1 + it ∗ c̃t, (7)

ot = σ(Wxoxt +Whoht−1 + bo), (8)

ht = ot ∗ tanh(ct), (9)

where ht represents the hidden state of LSTM at time t, which
is also the output of LSTM at this time step. tanh and σ
sigmoid are respectively the hyperbolic tangent function and
sigmoid function. All the W and b are the learnable parameters
of weights and bias. In addition, xt denotes the input of LSTM
at time t, and the definition of xt is formulated by:

xt = concat(v, yt−1), (10)

where v and yt−1 denote the feature vector extracted by CNN
and the output of LSTM at time t− 1, respectively. xt is the
combination of v and yt−1.

In general, the overall procedure of decoding can be denoted
as:

ht = LSTM(xt), (11)

yt =Wed ∗ ht, (12)

where yt represents the output of an word embedding opera-
tion on ht. At each time step, only one word would be output
by LSTM.

LSTM Cell

σ 

tanh

tanhσ σ 

ct-1

ht

ct

ft it ot

yt

xt

Fig. 3: The structure of LSTM.

C. Optimization Loss

1) Loss Defination: In image captioning, the word pre-
diction is regarded as a multi-classification task. Therefore,
the word probability distribution of the generated sentence
and reference sentence can be denoted as ŷ = [ŷ1, ..., ŷN ],
ŷt ∈ RK , and y = [y1, ..., yN ], yt ∈ RK . Here N is the
sentence length and K is the vocabulary size. For a label
sequence of s = [s1, ..., sN ] where si ∈ R1 refers to the word
number in the vocabulary at time step t. ŷ is the one-hot verson
of s. Generally, for a predicted sentence, the loss utilized for
optimization during training can be denoted as:

L = −
T∑

t=1

Lt, (13)

where t and T represent the current time step and the total
time steps, respectively.

2) PCE, NCE and PNCE Loss: At time step t, the
sub-loss of Lt can be expressed in three different forms of
Positive Cross Entropy loss (PCE loss, denoted as LPCE),
Negative Cross Entropy loss (NCE loss, denoted as LNCE)
and Positive-Negative Cross Entropy loss (PNCE loss), which
aim at optimizing target words directly and indirectly. It is
worth mentioning that the concepts of NCE loss and PNCE
loss are first proposed in this paper.

In LPCE , only the target word, which can be regarded as
the positive sample, is treat as optimization objective. It is
defined as LPCE :

LPCE = −y(st)t ∗ log ŷ(st)t

= − log ŷ
(st)
t ,

(14)

where st denotes the number of the target word at time step t.
y
(st)
t and ŷ(st)t respectively refer to the output probability and

target probability of st. It is obviously that the value of y(st)t

equals to 1. The goal of PCE loss is to optimize the output
probability of the target word to 1. PCE loss intrinsically is
the typical CE loss [33] when it is used in RSIC.

In LNCE , only the non-target words at time step t, which
can be considered as the negative samples in contrast to the
positive sample, are treat as optimization objectives. It is
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defined as LNCE :

LNCE = − 1

N − 1

N∑
i 6=st

(1− y(i)t ) ∗ (1− log ŷ
(i)
t )

= − 1

N − 1

N∑
i 6=st

(1− log ŷ
(i)
t ),

(15)

where y(i)t and ŷ(i)t respectively refer to the output probability
and target probability of the i-th word in the vocabulary except
st. The goal of NCE loss is to optimize the sum of the output
probability of all the non-target words to 0.

Although both PCE and NCE loss have the same goal
to make the output probability of st converge to 1, their
optimization objectives and strategies are different. For more
comprehensive ablation study, they are composed into a new
combination loss of PNCE loss denoted as LPNCE , which is
defined as:

LPNCE = LPCE + LNCE

= − log ŷ
(st)
t − 1

N − 1

N∑
i 6=st

(1− log ŷ
(i)
t ),

(16)

3) TCE Loss: The aim of Truncation Cross Entropy (TCE)
loss is designed to alleviate the over-fitting problem of cap-
tioning model for RSIC at training stage. The proposed TCE
loss denoted as LTCE is a piecewise function, which is made
up of two components: a common PCE loss and a truncation
loss. It is formulated as:

LTCE =

{
−y(st)t ∗ log ŷ(st)t , if y(st)t < 1− γ
− log(1− γ), otherwise,

(17)

where γ is the value of truncation threshold which reserves a
margin for the non-target words during the training stage. In
this paper, γ is set to 0, 0.1, 0.2, 0.3 and 0.4, respectively. It is
worth mentioning that TCE loss is actually the PCE/CE loss
when γ is equal to 0. y(st)t and ŷ(st)t respectively refer to the
output probability and target probability of st. The proposed
TCE loss is illustrated in Fig. 4.

margin for 
non-target words

Fig. 4: TCE loss with different values of γ.

1. There are many residential areas near the school.
2. A playground is built next to a white building.
3. Several playgrounds are in the big school.
4. Several playgrounds are in the big school.
5. There are many residential areas near the school.

Fig. 5: An example of an image and its corresponding five
captions in RSICD.

TCE loss is developed based on PCE loss. Different from
PCE loss, however, an upper limit of 1−γ is set in TCE loss to
determine which loss would be chosen during the optimization
procedure. Supposing that the output probability of the target
word (i.e., y(st)t ) exceeds the upper limit of 1 − γ, the loss
function switches from PCE loss to Truncation loss. Therefore,
y
(st)
t would be optimized to a value of 1−γ instead of 1, which

means a probability margin of γ would be specially reserved
for the rest non-target words in the vocabulary except the
target word. In this way, the over-fitting phenomenon caused
by common CE loss can be effectively alleviated.

IV. EXPERIMENTS

In this section, experiments are conducted on three datasets
to verify the effectiveness and generalization of the proposed
method. First, we introduce the experimental datasets and
evaluation metrics of RSIC. Then the experiment settings are
provided in detail. Following that, the over-fitting phenomenon
caused by Cross Entropy loss is discussed, and the ablation
experiments of PCE, NCE, PNCE and TCE loss are performed.
Finally, our results are compared with some state-of-the-art
models with comparative analysis.

A. Datasets

There are three widely used RSIC datasets of different sizes,
including Sydney-captions, UCM-captions and RSICD.

1) Sydney-captions: The Sydney-captions dataset is pro-
posed by Qu et al. [25], which is based on Sydney Data Set
[34]. It contains 613 images with seven scene categories, in-
cluding industrial, rivers, residential, meadow, runway, airport
and ocean. All the images are collected from Google Earth
of Sydney, Australia. Besides, the resolution of each image
is 0.5m. For each image, five reference sentences are given
to abstract the content from different observers. Totally, there
are 237 different words in Sydney-captions dataset. 80% of
the images in Sydney-captions are used for training, 10% for
validation and the rest 10% for test.

2) UCM-captions: The UCM-captions dataset [25] is also
proposed in [25], which is based on the UC Merced (UCM)
land-use data set [35]. It contains 2100 high resolution remote
sensing images with 21 scene categories, including building,
beach, airplane, chaparral, forest, harbor, freeway, overpass,
intersection, runway, river, agricultural, dense residential, ten-
nis court, sparse residential, golf course, baseball diamond,
medium residential, parking lot, mobile home park, and stor-
age tank. All the images are measuring 256 × 256 pixels with
a pixel resolution of 0.3048m. Totally, there are 368 different
words in UCM-captions dataset. Similar to Sydney-captions
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Fig. 6: An example of the probability of the generated top-3 words at each time step. The 1st, 2nd and 3rd row show the words
of the maximal, the submaximal and the third probability at each time step. Besides, the others denotes all the non-maximal
words in the vocabulary.

data set, five descriptions are given for each image. And the
splitting ratio is the same as Sydney-captions.

3) RSICD: The RSICD dataset is proposed by Lu et al.
[26], which consists of 10921 images measuring 224 × 224
pixels. All the images are collected from MapABC, Baidu
Map, Google Earth, and Tianditu with different resolutions.
Totally, there are 3323 different words in RSICD dataset. Sim-
ilar to previous datasets, five reference sentences are provided
for each image. It is mentioning that there are repetitions in
the five reference sentences and its splitting ratio is the same
as Sydney-captions and UCM-captions. There is a captioning
example of a remote sensing image is shown in Fig. 5.

B. Evaluation Metrics

In the field of remote sensing image caption generation, four
evaluation metrics are commonly used, including BLEU [40],
METEOR [41], ROUGE L [42] and CIDEr [43]. The value
range of BLEU, METEOR and ROUGE L are all from 0 to
1, and the value range of CIDEr is from 0 to 5. For all four
metrics, the larger the value is, the better the quality of the
generated captions is.

1) BLEU: BiLingual Evaluation Understudy (BLEU) [40]
was first utilized to evaluate the quality of machine transla-
tion models, and now it is widely used in various sequence
generation tasks. By calculating the precision of n-gram of
different lengths and performing geometric weighted average,
BLEU aims to measure the n-gram coincidence between the
generated sequence and the reference sequence. Here, the
value of n is set to 1, 2, 3, 4 corresponding to BLEU1, BLEU2,
BLEU3 and BLEU4.

2) METEOR: Metric for Evaluation of Translation with
Explicit ORdering (METEOR) [41] is measured by computing
an alignment between the generated sentence and the reference
sentence. Based on a single-precision weighted harmonic mean
and single-word recall rate, METEOR takes into account both
precision and recall rate, thus it can solve some of the defects
inherent in the BLEU standard.

3) ROUGE L: Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) [42] was first applied in the field of text
summarization. It is similar to BLEU, while the difference
is that ROUGE L concentrates on calculating the recall rate.
F-measure based on LCS(Longest Common Subsequence) is

adopted in ROUGE L metric to evaluate the similarity of the
reference sentence and the generated sentence.

4) CIDEr: Consensus-based Image Description Evaluation
(CIDEr) [43] is a metric for image captioning. In CIDEr, each
sentence is translated into a “document” and expressed as a
TF-IDF (term frequency inverse document frequency) vector.
Then the cosine similarity between the reference sentence and
the generated sentence would be calculated by the model.
Compared with the above mentioned metrics, CIDEr takes into
account the frequence of words in the vocabulary.

C. Experimental Settings

In this paper, all the experiments are built on Pytorch
1.3 of Python 3.7. Four different CNN models pretrained on
ImageNet, including AlexNet [44], VGG16 [45], ResNet18
[46], and GoogleNet [47], are employed to explore the efficient
CNN feature extractor for RSIC. We remove all layers after
the last convolutional layer of CNNs, which are replaced by
a global average pooling layer. The output of CNN extractors
is a high-dimension feature vector, which is the input of
a one-layer LSTM. For AlexNet, the dimension of feature
vector is 256, while for the other three CNN extractors, the
dimension of the feature vector is 512. During decoder stage,
the dimension of both the word embedding and hidden state of
LSTM is set to 512 in all the experiments. In order to improve
the memory efficiency, the data is processed in batches with
the batch size set to 64. During the whole training phase,
Adam is utilized to optimize the models. All the models are
trained for 50 epochs with the learning rate of 1e-4. For TCE
loss, we set the truncation threshold value γ to 0, 0.1, 0.2, 0.3,
0.4, respectively to explore the effect of margin value.

D. Exploring The Efficient CNN Extractor

In order to explore the efficient CNN extractor for RSIC,
four classical CNN achitectures are adopted here, including
AlexNet, VGG16, ResNet18, and GoogleNet. AlexNet [44]
is designed by implements deep convolutional neural network
structure for the first time in large-scale image datasets. Com-
pared with AlexNet, VGG16 [45] is improved by replacing
the large convolution kernels with several small consecutive
convolution kernels, with much deeper layers to learn more
complex patterns. GoogleNet [47] has an unique inception
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TABLE I: The experimental results with different CNN extractors on UCM-captions dataset.

CNN Extractor BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr
AlexNet 0.7567 0.6728 0.6123 0.5626 0.3984 0.6755 2.4720
VGG16 0.7758 0.6965 0.6410 0.5929 0.4275 0.7073 2.6150
ResNet18 0.8079 0.7384 0.6861 0.6397 0.4496 0.7306 2.7688
GoogleNet 0.8193 0.7522 0.7007 0.6559 0.4708 0.7483 2.8996

TABLE II: The experimental results of PCE (i.e., CE), NCE and PNCE loss on three datasets.

Dataset Loss BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr

UCM-captions
LPCE 0.8193 0.7522 0.7007 0.6559 0.4708 0.7483 2.8996
LNCE 0.8034 0.7327 0.6775 0.6283 0.4586 0.7382 2.8390
LPNCE 0.8035 0.7442 0.6943 0.6474 0.4617 0.7433 2.9470

Sydney-captions
LPCE 0.7960 0.7238 0.6496 0.5810 0.4244 0.7034 2.0180
LNCE 0.7751 0.6882 0.6066 0.5346 0.4015 0.6837 1.9248
LPNCE 0.7877 0.7106 0.6512 0.6015 0.4147 0.6920 2.1999

RSICD
LPCE 0.7440 0.6183 0.5295 0.4615 0.3421 0.6500 2.3524
LNCE 0.7011 0.5608 0.4710 0.4065 0.3059 0.6068 1.9541
LPNCE 0.7290 0.6058 0.5203 0.4555 0.3248 0.6438 2.2900

structure consisting of several convolutional kernels of differ-
ent sizes, and thus is better for multi-scale feature extraction
task. For taking advantage of a novel residual block, ResNet
[46] is designed to alleviate the problem of gradient disappear-
ance in deep networks with skip-connection operation, which
makes the network training faster and more stable. Since the
number of images in UCM-captions dataset is moderately,
experiments with different CNN extractors are conducted on
UCM-captions to find the efficient CNN extractor for RSIC.

The experimental results with four pretrained CNN extrac-
tors on UCM-captions dataset are provided in Table I, where
the truncation threshold value of γ is fixed to 0, i.e., PCE loss.
In the experiments, GoogleNet achieves the best performance
in all kinds of evaluation metrics. Taking CIDEr for example,
GooleNet has an increase of 0.4276 as compared to AlexNet,
0.2846 as compared to VGG16, and 0.1308 as compared to
ResNet18. Thus, it would be used as the feature extractor in
all the subsequent experiments. It is probably that GoogleNet
can fuse multi-scale features by applying several convolution
kernels of different sizes at each layer, which is suitable for
feature extraction of remote sensing images

E. Results of PCE, NCE and PNCE Loss

To quantificationally explore the influence of positive and
negative sample training strategy for RSIC, we use the pro-
posed three kinds of losses of PCE loss (i.e., CE loss), NCE
loss and PNCE loss, to optimize the same encoder-decoder
model (GoogleNet + LSTM) on three datasets. The model
optimized by PCE loss only uses the positive samples for
optimization during training stage. Similarly, all the negative
samples are utilized to optimize the model for NCE loss. When

it comes to PNCE loss, both the positive and negative samples
are adopted for optimization.

The experimental results are shown in Table II. Overall, the
encoder-decoder model optimized by PCE loss achieves the
best performance on all three datasets, and PNCE loss has
the suboptimal results and NCE loss performs worst. Taking
RSICD for instance, the BLEU1, BLEU2, BLEU3, BLEU4,
METEOR, ROUGE L and CIDEr scores of the model opti-
mized by PCE loss are respectively 0.7440, 0.6183, 0.5295,
0.4615, 0.3421, 0.6500 and 2.3524, which have increases of
0.0429, 0.0575, 0.0585, 0.055, 0.0362, 0.0432 and 0.3983,
respectively, as compared to the model optimized by NCE
loss. When NCE is added to PCE loss, i. e., PNCE loss,
the scores drop by respectively 0.015, 0.0125, 0.0092, 0.006,
0.0173, 0.0062 and 0.0624 as compared to single PCE loss.
Such results show that compared with PCE loss, NCE loss
plays a negative role in improving the caption quality.

First of all, it should be noted that the model would be
overfitting and further decrease the performance when the
output probability of all the words is optimized to 1. Although
the training targets of PCE, NCE and PNCE loss are the
same to make the output probability of words at each time
optimized to 1, but they have different training effects. NCE
loss optimizes the negative words at each time step while
PCE loss directly optimize the positive words. Limited by
the implicit optimization targets, it is understandable that the
performance of NCE loss falls behind PCE loss. But when
NCE is added to PCE loss, the new PNCE loss would lead to
the faster convergence of model and make the model miss the
better parameter space.
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TABLE III: The experimental results of TCE loss with different margin values on three datasets. When γ is equal to 0, TCE
loss is equivalent to PCE/CE loss.

Dataset Threshold BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr

UCM-captions
γγγ = 0 0.8193 0.7522 0.7007 0.6559 0.4708 0.7483 2.8996
γγγ = 0.1 0.8210 0.7622 0.7140 0.6700 0.4775 0.7567 2.8547
γγγ = 0.2 0.8237 0.7604 0.7089 0.6681 0.4762 0.7591 2.9809
γγγ = 0.3 0.8057 0.7415 0.6880 0.6387 0.4694 0.7451 2.9038
γγγ = 0.4 0.8242 0.7592 0.7059 0.6569 0.4730 0.7551 2.9332

Sydney-captions
γγγ = 0 0.7960 0.7238 0.6496 0.5810 0.4244 0.7034 2.0180
γγγ = 0.1 0.7937 0.7304 0.6717 0.6193 0.4430 0.7130 2.4042
γγγ = 0.2 0.7873 0.7173 0.6512 0.5926 0.4429 0.7039 2.1447
γγγ = 0.3 0.8067 0.7356 0.6677 0.6082 0.4266 0.7050 2.3607
γγγ = 0.4 0.7820 0.7062 0.6355 0.5757 0.4332 0.6991 2.0517

RSICD
γγγ = 0 0.7440 0.6183 0.5295 0.4615 0.3421 0.6500 2.3524
γγγ = 0.1 0.7589 0.6264 0.5319 0.4597 0.3431 0.6565 2.3237
γγγ = 0.2 0.7438 0.6138 0.5212 0.4513 0.3353 0.6448 2.3041
γγγ = 0.3 0.7608 0.6358 0.5471 0.4791 0.3425 0.6687 2.4665
γγγ = 0.4 0.7512 0.6270 0.5398 0.4735 0.3439 0.6548 2.4143

TABLE IV: Comparison results of different methods on UCM-captions dataset.

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr
FC-Att+LSTM [36] 0.8135 0.7502 0.6849 0.6352 0.4173 0.7504 2.9958
SM-Att+LSTM [36] 0.8154 0.7575 0.6936 0.6458 0.4240 0.7632 3.1864
Soft Attention [26] 0.7454 0.6545 0.5855 0.5250 0.3886 0.7237 2.6124
Hard Attention [26] 0.8157 0.7312 0.6702 0.6182 0.4263 0.7698 2.9947
GCN Based Multi-Level Attention [27] 0.8330 0.7712 0.7154 0.6623 0.4371 0.7763 3.1684
sound-a-a [37] 0.7484 0.6837 0.6310 0.5896 0.3623 0.6579 2.7281
RTRMN(statistical) [38] 0.8028 0.7322 0.6821 0.6393 0.4258 0.7726 3.1270
VAA [39] 0.8192 0.7511 0.6927 0.6387 0.4380 0.7824 3.3946
The Proposed Method 0.8210 0.7622 0.7140 0.6700 0.4775 0.7567 2.8547

F. Results of Truncation Cross Entropy (TCE) Loss

In order to slow down the speed towards overfitting during
the training stage and further search for the parameters with
more generalization performance, we use Truncation Cross
Entropy (TCE) loss to optimize the same encoder-decoder
based model (GoogleNet + LSTM) on three datasets. Different
from PCE, NCE and PNCE loss mentioned above, the output
probability of the target word would not be optimized to 1 by
TCE loss, which means a probability margin could be reserved
for the rest non-target words related except the target word.
The truncation threshold denoted as γ is set to 0, 0.1 0.2
0.3 and 0.4, respectively, to further explore the influence of
probability margin in this subsection.

Table III shows the comparative results of PCE loss and
TCE loss with different margin values on three datasets.
Compared with absolute PCE loss, when adding Margin Max
Operation (TCE loss), the performance of RSIC obtains a
comprehensive enhancement. Similarly, taking RSICD for
example, the BLEU1, BLEU2, BLEU3, BLEU4, METEOR,

ROUGE L and CIDEr scores are respectively 0.7608, 0.6358,
0.5471, 0.4791, 0.3425, 0.6687 and 2.4665 under the cir-
cumstance that γ is set to 0.3. Compared with PCE loss
optimized model (namely, when γ is equal to 0 in Table III),
there are wide increases of 0.0168, 0.0175, 0.0176, 0.0176,
0.0004, 0.0187 and 0.1141, respectively. Besides, it is worth
mentioning that the optimal value of γ is 0.1 for both UCM-
captions and Sydney-captions, and it increases to 0.3 when
using the largest dataset of RSICD. Overall, according to
the results, it can be observed that by setting a truncation
threshold, the model optimized by TCE loss achieves better
performance than PCE loss, and the best threshold varies with
the datasets.

It is notable that the best optimal margin value of γ increases
with the size of a dataset, more specifically, the size of
its vocabulary. Since RSICD contains more words (the total
number of words is 1187) than the other two datasets, the
same features or objects in RSICD can be described with
more synonymous words compared with them in the other
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TABLE V: Comparison results of different methods on Sydney-captions dataset.

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr
FC-Att+LSTM [36] 0.8076 0.7160 0.6276 0.5544 0.4099 0.7114 2.2033
SM-Att+LSTM [36] 0.8143 0.7351 0.6586 0.5806 0.4111 0.7195 2.3021
GoogleNet Soft Attention [26] 0.7322 0.6674 0.6223 0.5820 0.3942 0.7127 2.4993
GoogleNet Hard Attention [26] 0.7591 0.6610 0.5889 0.5258 0.3898 0.7189 2.1819
GCN Based Multi-Level Attention [27] 0.8233 0.7548 0.6587 0.6003 0.4202 0.7237 2.3110
sound-a-a [37] 0.7093 0.6228 0.5393 0.4602 0.3121 0.5974 1.7477
VAA [39] 0.7431 0.6646 0.6029 0.5495 0.3930 0.6999 2.4073
The Proposed Method 0.7937 0.7304 0.6717 0.6193 0.4430 0.7130 2.4042

TABLE VI: Comparison results of different methods on RSICD dataset.

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr
FC-Att+LSTM [36] 0.7459 0.6250 0.5338 0.4574 0.3395 0.6333 2.3664
SM-Att+LSTM [36] 0.7571 0.6336 0.5385 0.4612 0.3513 0.6458 2.3563
Soft Attention [26] 0.6753 0.5308 0.4333 0.3617 0.3255 0.6109 1.9643
Hard Attention [26] 0.6669 0.5182 0.4164 0.3407 0.3201 0.6084 1.7925
GCN Based Multi-Level Attention [27] 0.7597 0.6421 0.5517 0.4623 0.3543 0.6563 2.3614
sound-a-a [37] 0.6196 0.4819 0.3902 0.3195 0.2733 0.5143 1.6386
RTRMN(statistical) [38] 0.6102 0.4514 0.3535 0.2859 0.2751 0.5452 1.4820
The Proposed Method 0.7608 0.6358 0.5471 0.4791 0.3425 0.6687 2.4665

two datasets. Therefore, the problem of over-fitting between
the interchangeable words during the training stage is more
serious for it. Further, more probability margin of each word
need to be reserved for its relative words in RSICD, which
means that the optimal truncation threshold of γ should be
bigger. In contrast, the number of words in UCM-captions
and Sydney-captions is respectively 368 and 237, thus a small
value of γ can perform well for them.

In summary, compared with the pure PCE loss, by reserving
a suitable probability margin for the relative words to replace
the target word, TCE loss is rather effective to alleviate the
over-fitting for all three datasets during optimization process.

G. Comparison with State-of-the-Art Methods

To verify the effectiveness of the proposed method, compar-
ison experiments are conducted on several state-of-the-art ap-
proaches, including FC-Att+LSTM [36], SM-Att+LSTM [36],
Soft Attention [26], Hard Attention [26], GCN Based Multi-
Level Attention [27], sound-a-a [37], RTRMN(statistical) [38],
and VAA [39]. All of these methods are built on encoder-
decoder framework. Both FC-Att+LSTM and SM-Att+LSTM
are proposed in [36], where the multiple attributes, which
are extracted from the high-level semantic features of remote
sensing images by attention mechanism, are utilized to obtain
better caption quality based on the basic model. The main
difference of these two models is that their high-level attributes
are the output of different layers of CNN (the last fully
connected layer for FC-Att+LSTM while the softmax layer
for SM-Att+LSTM). Soft Attention and Hard Attention are
introduced in [26]. In particular, Soft Attention is a determin-
istic method where a weight is given to decide which part

of the image should be paid more attention. Differently, Hard
Attention is a stochastic method, where a sampling strategy
is employed to concentrate on different parts of the image
and then reinforcement learning is adopted to better improve
the performance of the model. GCN Based Multi-Level At-
tention is proposed by [27]. Typically, a multilevel attention
module is presented for better performance of RSIC, and
the position-adaptive and scale-adaptive image representations
can be learned by this model. The method of sound-a-a is
proposed [37], where a sound mechanism is introduced as an
active attention to improve the quality of caption generation.
RTRMN(statistical) is proposed in [38]. This model aims to
overcome the drawback of long-term information dilution in
RNN, and a topic word strategy is presented to fully utilize
the given five reference captions. VAA is proposed in [39],
where a novel Visual Aligning Attention model is presented
to address the problem of not explicitly training the attention
layers in encoder-decoder model.

1) Results on UCM-captions: Table IV shows the com-
parison results between the aforementioned methods and
the proposed CNN-LSTM model with TCE loss on UCM-
captions dataset. It can be seen that the results of the pro-
posed method are the best among all the methods in terms
of BLEU4 and METEOR. According to BLEU1, BLEU2,
BLEU3, ROUGE L and CIDEr, the performance of the pro-
posed method just slightly fall behind the other state-of-the-art
approaches.

2) Results on Sydney-captions: The comparative results on
Sydney-captions dataset are shown in Table V. It can be
observed that the proposed method performs best in terms
of BLEU3, BLEU4 and METEOR. As for BLEU1, BLEU2,



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

(a) There are two tennis courts
arranged neatly and surrounded by
some plants.

(b) There are two white storage
tanks on the ground.

(c) An overpass go across the roads
with some cars on the roads.

(d) Many boats docked in lines at
the harbor and the water is deep
blue.

(e) A residential area with many
houses arranged neatly and divided
into rectangles by some roads.

(f) Many buildings and some green
trees are in a commercial area.

(g) Many airplanes are parked in
an airport.

(h) A baseball field is near several
buildings and some green trees.

(i) Some buildings and green trees
are in two sides of a river with a
bridge.

(j) Some green trees and several
buildings are around a circle build-
ing.

(k) Many cars are parked in a park-
ing lot.

(l) Many buildings and green trees
are around a football field.

Fig. 7: Examples of test images and the corresponding generated captions.

ROUGE L and CIDEr, our method achieves a competitive
performance compared with other state-of-the-art approaches.

3) Results on RSICD: As the biggest RSIC dataset, RSICD
contains much more images than the other two datasets with
complex scenarios, and thus its result is more robust and
convincing. The comparative results are shown in Table VI.
The highest score for each metric is marked in bold. It can
be observed that compared with all the existing sate-of-the-
art approaches, the proposed method takes the first place
in BLEU1, BLUE4, ROUGE L and CIDEr, and competitive
results in BLEU2, BLEU3 and METEOR. Such experimental
results completely prove the effectiveness and superiority of
our approach.

4) Advantages of Our Method: According to the analysis
of methods and comparative experimental results on three
datasets, it can be found that compared with the other sate-

of-the-art methods, our approach has two obvious advantages,
which can be summarized as follows:

Without adding extra modules or parameters. Different
from the other comparison methods, the proposed method
aims to improve the encoder-decoder based model from the
aspect of training optimization, which means the model of
our method is the basic CNN combined with LSTM, without
adding any extra modules. In other words, there are no extra
parameters embedded into our model, so the computational
complexity and training cost of TCE loss is almost equal
to the basic model, which operates much faster than the
aforementioned methods.

Getting better performance. From Table IV to Table
VI, the comparative results show that the proposed method
achieves superior performance on RSIC datasets. Typically,
when the number of n-gram for BLEU metric (from BLEU1
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to BLEU4) increases, our method gets relatively better perfor-
mance compared with others. It is probably caused by that
the constraints on each word in phrase would be relaxed
during the training stage, which makes our method more
flexible for multiple consecutive words. It is beneficial for the
open caption from different observers. Some examples of test
images and the corresponding generated captions are shown
in Fig. 6 and Fig. 7.

V. CONCLUSION

In this paper, we first quantificationally explore the over-
fitting phenomena in remote sensing image captioning (RSIC)
caused by Cross Entropy loss. To deal with this problem, a
novel Truncation Cross Entropy (TCE) loss is specially pro-
posed for RSIC. By setting a truncation threshold, the output
probability of the target word would not be optimized to 1 by
TCE loss, and thus a probability margin can be reserved for
the rest words in the vocabulary. Based on a classic encoder-
decoder model (CNN plus LSTM), comparative experiments
are conducted on three widely used remote sensing image
captioning datasets, including UCM-captions, Sydney-captions
and RSICD. The superior performance of the experimental
results compared with other state-of-the-art methods shows
that the proposed TCE loss is rather effective for RSIC.
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